MICROWAVE LEVEL SWITCH

Model LMW-ST/SR-2

328 foot range with 1" diam. antenna
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATION PRINCIPAL</td>
<td>3</td>
</tr>
<tr>
<td>FEATURES</td>
<td>4</td>
</tr>
<tr>
<td>SPECIFICATIONS</td>
<td>5</td>
</tr>
<tr>
<td>APPLICATIONS</td>
<td>6</td>
</tr>
<tr>
<td>HARDWARE OPTIONS</td>
<td>10</td>
</tr>
<tr>
<td>DIMENSIONS & PART NUMBERS</td>
<td>14</td>
</tr>
<tr>
<td>INSTALLATION & MOUNTING</td>
<td>20</td>
</tr>
<tr>
<td>WIRING</td>
<td>25</td>
</tr>
<tr>
<td>FUNCTION OF SWITCHES, INDICATORS AND RHEOSTATS</td>
<td>27</td>
</tr>
<tr>
<td>SENSITIVITY ADJUSTMENT</td>
<td>28</td>
</tr>
<tr>
<td>GUARANTEE</td>
<td>29</td>
</tr>
</tbody>
</table>
General

The LMW-ST/SR type microwave sensor is a level switch consisting of a transmitter (LMW-ST) and a receiver (LMW-SR) installed face-to-face.

The transmitter emits a continuous, low power microwave beam towards the receiver and an output relay is released when the beam is obstructed.

The sensor has wide application across all areas of industry where highly reliable, non-contact level detection is required. The sensor is generally used for process control by monitoring presence/absence of product, flow/no flow conditions and point level detection in bins and silos. The sensor may also be used as a proximity switch for detection of vehicles such as dump trucks and rail cars.

Penetrability of Microwaves

Harsh environments may result in a buildup of contaminants on the sensing head; however, the sensor is easily able to penetrate such buildup thanks to the high penetrability of microwaves.

When microwaves transmitted through air encounter an object, some will be reflected, some absorbed and the rest will pass through the object. The amount of microwaves passing through the object depends on its composition.

Generally speaking, microwaves cannot penetrate metals and are reflected; water absorbs the most microwaves.

Microwaves can easily pass through plastics, glass, ceramic, paper etc.

Safety of Microwaves

The sensor’s output is regulated to assure compliance with FCC Rule 15, covering field disturbance devices.

With low output power, the sensor’s power is well below the American OSHA exposure specifications as stated in Section 1910.97.

There are no health hazards to personnel operating Princo sensors: no license, approval or caution sign posting is required.

Heterodyne vs. Diode Detection

The MWS-ST/SR level switch is the first of its kind to utilize the heterodyne detection method rather than the, now obsolete, diode detection method.

- Heterodyne method
- Diode method (commonly used)
- Noise level
 - Minimum received power: -70dBm
 - Minimum received power: -50dBm

The heterodyne detection method gives detection output that is proportional to the received power level, whereas the diode detection method gives detection output that is proportional to the square of the received power level.

Therefore the heterodyne method allows detection with a minimum received power that is lower than that of the minimum level required by the diode detection method. This greatly increases the operating range/penetrability without any increase in the power of the transmitted microwave radiation.
FEATURES

100m Range with heterodyne detection
Approx. 100m range with a Ø27mm antenna, thanks to the Heterodyne detection method.

High penetration
Easily penetrates process buildup on antenna, firebrick, refractory etc., thanks to the increased operating range.

Unaffected by adverse environments
The sensor is unaffected by surface contaminants, flames, steam, vapor or airborne particles.

Simple beam alignment
Easy initial beam alignment at installation, thanks to the wide beam angle.

Selectable detection mode
Either broken beam (BLOCK) or unbroken beam (UNBLOCK) detection method may be selected.

On delay time rheostat
On delay time, adjustable 0.1~10secs., prevents instantaneous detection of falling material while filling.

15 LED indicator bank
A 15 LED indicator array displays the received power level and the sensitivity-set-point, allowing for visual sensitivity adjustment and maintenance.

No set-to-set interference
Four channels are available (CH1~4), selectable by rotary switch, eliminating set-to-set interference. The sensor can also operate in regular single channel mode by selecting CH0.

Analog output (optional)
The received power level may be output as a 4~20mA analog signal.

Inspection window (optional)
The received power level and the sensitivity-set-point are easily seen, without removing the controller cover.
SPECIFICATIONS

Type
Transmitter : LMW-ST-2
Receiver : LMW-SR-2

Power supply
AC100~120V ±10% 50/60Hz &
AC200~240V ±10% 50/60Hz
NOTE: Phase of power supply must be the same for both transmitter and receiver.

Operating distance
<80 meters
Note: Operating distance may vary from sensor to sensor and according to installation.

Frequency & transmission power
Approx. 24GHz, less than 10mW
Note: Complies with FCC Title Rule 15 and OSHA exposure specification stated in Section 1910.97. Caution sign posting not required.

Number of channels
Single Channel Mode (CH0): 1
Multi Channel Mode (CH1~4): 4
Note: May operate in single channel mode by selecting CH0; doing so will disable the multi channel function.

Received power level
Indicated by 1 of 15 LED indicators
Note: Indicator is fully illuminated

Sensitivity-set-point
Indicated by 1 of 15 LED indicators
Note: Indicator is half illuminated

Radiation angle
Approx. ±15° (angle in half of receiving value)

Output contact (on receiver)
1C relay contacts AC250V, 3A (COSØ=1)

Response time
25msec (when in multi channel mode)
10msec (when in single channel mode)

On delay function
0.1 ~ 10sec

Condition of output function
Output occurs on change of state, but only after any delay period has past. Output relay is unexcited during output state.

Delay time from power on to function
Transmitter : Approx. 50msec.
Receiver : Approx. 5sec

Power consumption
Transmitter : 2VA
Receiver : 2VA

Noise tolerance
Square wave noise from noise simulator (Rising time: 1 nanosecond, Width: 1 microsecond), ±1.5KV (normal and common modes), with the frequency of the power supply in the 0º ~ 360º phase.

Operating ambient temperature
-10ºC ~ +55ºC
Note: Optional hardware is available for high temperature applications up to 600ºC.

Non-function ambient temperature
-20ºC ~ +70ºC

Continuous maximum pressure
0.5MPa
Note: Optional hardware is available for high pressure applications.

Enclosure rating
IP65 Equivalent

Enclosure construction
Diecast aluminum

Color
Metallic silver grey

Weight
Transmitter : 1kg
Receiver : 1kg
APPLICATIONS

Standard Applications

Blocked Chute Detection

Note: Install the sensors behind the material flow to avoid false detection.

Hi/low level of solids in cyclone bins, hoppers, silos etc.

Hi/low level of liquids in tanks, and other storage vessels.
High Temperature Applications

EK Type
Super heavy duty EK type extension kit: all stainless steel fittings, antenna rated at 600ºC.

Note: See HARDWARE OPTIONS for more details.

WG Type
Stainless steel antenna with straight and bent waveguides, antenna rated at 600ºC.

Note: See HARDWARE OPTIONS for more details.
High Pressure Applications

NP Type
Polypropylene plug with flange mounting.

Note: See HARDWARE OPTIONS for more details.
High Vibration & Hazardous Applications

Isolated, Non-invasive Mounting

Sensors may be protected from high temperatures, hazardous materials, vibration and shock by providing detecting windows through which the microwaves can pass.

Detecting windows should be made of ceramic, glass, Teflon or polypropylene materials having no water content, through which there is minimal loss of microwave energy.

The detecting windows should be at least 60mm in diameter as microwaves pass more easily through larger apertures. The distance between the window and the antenna should be less than 200mm.

The sensors should be fixed to an isolated support structure to protect against high vibration.
HARDWARE OPTIONS

Standard: Diecast Aluminum Antenna Head with Teflon Antenna cover

The standard enclosure is suitable for most applications that do not exceed the general specifications (temperature, pressure, vibration etc).

Standard (as above) with Optional Flange Mounting

Threaded flanges are available in most standards (JIS, DIN, ANSI etc).
Optional NP Type: Polypropylene Head and Flange

The NP type is useful for applications where the process material is conductive and tends to buildup, impairing the microwaves; the polypropylene plug should be placed into the standoff portion preventing material from entering the standoff.

The NP type, when combined with a high pressure flange/seal, is also suitable for high pressure applications. Threaded flanges are available in most standards (JIS, DIN, ANSI etc).

Optional NS Type: Stainless Steel Antenna Head, Teflon Antenna Cover and Flange

The NS type is suited for applications where the sensing head comes into contact with corrosive/abrasive materials. The stainless steel antenna head provides increased resistance to physical wear and tear. Threaded flanges are available in most standards (JIS, DIN, ANSI etc).
Optional SH Type: Stainless Steel Head, Teflon Antenna Cover and Optional Aluminum Cooling Fins

The SH type is suitable for higher temperature applications up to 150°C. The stainless steel antenna may be extended and cooling fins added to disperse heat energy conducted from the antenna.

Optional EK Type: Stainless Steel Antenna Head, Ceramic, Glass or Teflon Antenna Cover, Stainless Steel Waveguide, Flange and Optional Aluminum Cooling Fins

The EK type super heavy duty extension kit is suitable for high temperature applications up to 600°C.
Optional WG Type: Stainless Steel Antenna, Ceramic Antenna Cover, Stainless Steel Waveguides and Unions.

The WG type uses a combination of bent and straight waveguide extensions. The stainless steel antenna is installed in the high temperature area whilst the sensor electronics are installed in a room temperature area.

Any combination of bent and straight waveguides may be used, though the X, Y and Z axis, to remove the electronics from the high temperature environment.

The WG type is suitable for applications up to 600ºC.
DIMENSIONS & PART NUMBERS

Note: Hardware dimensions are same for both the transmitter and receiver.

Standard

Flange Mounting

Dimensions (mm)

<table>
<thead>
<tr>
<th>FLANGE</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G*</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIS5K50A</td>
<td>50</td>
<td>14</td>
<td>130</td>
<td>105</td>
<td>15</td>
<td>10-20</td>
</tr>
<tr>
<td>JIS0K65A</td>
<td>65</td>
<td>14</td>
<td>155</td>
<td>130</td>
<td>15</td>
<td>10-20</td>
</tr>
<tr>
<td>JIS10K50A</td>
<td>50</td>
<td>16</td>
<td>155</td>
<td>120</td>
<td>19</td>
<td>10-18</td>
</tr>
<tr>
<td>JIS10K65A</td>
<td>65</td>
<td>18</td>
<td>175</td>
<td>140</td>
<td>19</td>
<td>10-16</td>
</tr>
</tbody>
</table>

*Dimension G specified by user

NOTE: Other flange sizes are available upon request.
NP Type

Part Number Example: NP-56-075 = 5K65A Flange with 75mm long polypropylene head.

NOTE: Other flanges and polypropylene head lengths are available upon request.
Part Number Example: NS-56-075 = 5K65A Flange with 75mm long stainless steel head.

NOTE: Other flanges and stainless steel head lengths are available upon request.
SH Type

Part Number Example: SH-20-120 = 2" thread size with 120mm long stainless steel head.

NOTE: Other thread sizes and stainless steel head lengths are available upon request.

Thread (A)

Head length (B)

10: 1.0" (G1.0)
15: 1.5" (G1.5)
20: 2.0" (G2.0)

SH-
EK Type

Part Number Example: EK-18CF-CF-450 = 10K80A flange size, ceramic antenna cover, with cooling fins and 450mm long waveguide.

NOTE: Other flange sizes are available upon request.
Consult the factory or your local representative for assistance in deciding the appropriate parts and quantity for your application.
INSTALLATION & MOUNTING

General Guidelines

Mounting angle

The transmitter emits linear polarized microwaves; as such it is necessary to align the transmitter and its corresponding receiver in the same plane. The cable entry of both the transmitter and receiver should be facing in the same direction, or be 180º opposite each other.

If the units are installed with the cable entries at 90º to each other they will not function.

Elevation angle

The sensors should be mounted with the antennas facing each other on the same horizontal axis.

Note that the sensors do not have to be perfectly aligned, thanks to the wide beam angle, however suitable care should be taken.

Set-to-set interference

If two transmitter receiver sets are installed in close proximity to each other, one set should be mounted at 90º to the other to eliminate set-to-set interference.

If two transmitter receiver sets are installed in close proximity to each other, one set should be mounted at 90º to the other to eliminate set-to-set interference.

Note that the Deluxe Level Switch LMW-ST/SR-2 comes with 4 channels, selectable by rotary switch, to eliminate set-to-set interference. As such, installation of multiple sets as shown above may not be necessary.

Mounting flush

It is desirable to mount the units flush so as to minimize material buildup on the antenna. This is especially important if the process material contains moisture. Microwaves are able to penetrate most surface containments; however it is recommended that you optimize the installation to gain maximum reliability.

Penetrability of walls

Microwaves are able to penetrate walls made from non-conductive materials such as refractory/firebrick, ceramic, plastic, glass etc. Microwaves can not penetrate metallic or conductive wall linings: a hole must be made and a suitable process connection welded to the vessel.

Temperature Variation

The ambient temperature between the transmitter and receiver should not vary by more than 10ºC.
Mounting

Standard Mounting

The sensor is threaded into an internal half connector welded to the wall. The sensor should be mounted flush with the inside of the vessel and the SUS lock nut used to fix the sensor in position.

Apply liquid sealant into screw hole and/or any gaps.

Optional Flange Type Mounting

Flanges are optionally available in most standard sizes. The sensor’s flange is bolted to the process connection flange supplied by the user.

Installation on sloped walls may be accomplished with a pipe and Teflon window as shown above.

Note: The length and diameter of the pipe are critical to ensure optimal performance; consult your representative or the factory before deciding on these dimensions, we will advise you on the most appropriate dimensions for your application.
Optional NP Type Mounting

The polypropylene head is placed in the stand-off portion of the pipe and mounted flush with the inside of the vessel.

The polypropylene head is not fixed to the sensor; rather it is sandwiched between the two flanges.

Use suitable gaskets for high pressure applications.

Optional NS type Mounting

The stainless steel sensing head is placed in the stand-off portion of the pipe and mounted flush with the inside of the vessel.
Optional SH Type

The sensor is threaded into an internal half connector welded to the wall. The sensor head should be mounted flush with the inside of the vessel and the SUS lock nut used to fix the sensor in position.

Apply liquid sealant into screw hole and/or any gaps.

Optional EK Type Mounting

The sensor’s flange is bolted to the pipe’s flange. When fitted with a ceramic antenna cover, the stainless steel antenna can withstand temperatures up to 600ºC. The straight waveguide is used to penetrate the wall lining, allowing the antenna to be mounted flush with the inside of the wall.

NOTE: the sensor is capable of penetrating refractory/firebrick walls. In some cases you may want to leave a few centimeters of refractory/firebrick in front of the antenna as added precaution.
Optional WG Type Mounting

Room temperature area <55°C High temperature area <600°C

Fix the antenna to a suitable support bracket in the high temperature area using the mounting holes provided.

The sensor electronics should be located in a normal room temperature area: use the SUS lock nut to fix the sensor to a suitable support bracket.

The waveguide is connected via unions. If there is unevenness (i.e. rough edges of pipe) or if the waveguide is not fully inserted into the union then the transmission loss will be greater. Follow the instructions below to minimize transmission loss:

- Cut waveguides vertically using a pipe cutter, ensure that the cut is smooth and straight. Carefully remove any rough edges from the inside of the pipe. Do not remove excessive amounts of metal from the inside of the waveguide.

- Fully insert the waveguide into the union and confirm that the waveguide sits flush. Fasten the nut to finger tightness then use a spanner to tighten the nut one revolution only.

- If the inside of the waveguide becomes blocked, or if condensation builds up, the loss of transmission power will be increased; a malfunction may occur. To purge the waveguide of dirt and condensation build-up, dry air or N₂ gas should be injected through the Air inlet. To connect to the inlet, loosen the nut and fully insert a copper pipe with an external diameter of 1/4 inch, then fasten the nut. High pressure is recommended for the removal of dirt/dust particles. Low pressure is recommended for the removal of condensation.
<table>
<thead>
<tr>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not disconnect the wires connected to ground, either inside or outside the sensor. If they are disconnected it may cause electrocution or damage the circuits.</td>
</tr>
<tr>
<td>Do not touch live terminals of the sensor as high voltages may be present.</td>
</tr>
<tr>
<td>Do not disassemble any part of the sensor’s electronics.</td>
</tr>
<tr>
<td>Turn off the power before connecting to any terminals. If this is not done electrocution or damaged circuits may result.</td>
</tr>
<tr>
<td>To prevent electrocution, ensure that the ground terminal of the sensor is connected to ground before turning on the power.</td>
</tr>
<tr>
<td>If there are problems with grounded wires, or if other protective functions are absent, do not turn on the power.</td>
</tr>
<tr>
<td>Before turning on the power, confirm that the rated voltage of the controller is compatible with the voltage of the power supply.</td>
</tr>
<tr>
<td>Ensure that the ground wire is connected to earth before connecting any other wires to the controller.</td>
</tr>
</tbody>
</table>
Terminal Connection for AC Power Supply Type LMW-ST/SR-2

AC 100V~120V ±10%, 50/60Hz
AC 200V~240V ±10%, 50/60Hz

Note:
- The LMW-ST/SR-2 is not available with DC24V power supply.
- The phase of the power supply must be the same for both transmitter and receiver.

Selection of Detection Mode and Relay Configuration

<table>
<thead>
<tr>
<th>Detection Mode</th>
<th>Beam broken BLOCK</th>
<th>Beam unbroken UNBLOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Number</td>
<td>4 & 5</td>
<td>4 & 5</td>
</tr>
<tr>
<td>Unpowered state</td>
<td>Closed</td>
<td>Open</td>
</tr>
<tr>
<td>Powered state</td>
<td>Non-detecting state</td>
<td>Open</td>
</tr>
<tr>
<td></td>
<td>Detecting state</td>
<td>Closed</td>
</tr>
</tbody>
</table>

* AC 100V~120V ±10%, 50/60Hz
** AC 200V~240V ±10%, 50/60Hz
FUNCTION OF SWITCHES, INDICATORS AND RHEOSTATS

Transmitter LMW-ST-2

<table>
<thead>
<tr>
<th>Part name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Power indicator</td>
<td>Green when power is on</td>
</tr>
<tr>
<td>② Channel selector</td>
<td>Multi channel mode: CH 1 ~ 4</td>
</tr>
<tr>
<td></td>
<td>Single channel mode: CH 0</td>
</tr>
<tr>
<td>③ Block button</td>
<td>Blocks transmission</td>
</tr>
<tr>
<td>④ Terminals</td>
<td>Power supply (1~3)</td>
</tr>
<tr>
<td>⑤ Ground</td>
<td>Connected to chassis</td>
</tr>
</tbody>
</table>

Receiver LMW-SR-2

<table>
<thead>
<tr>
<th>Part name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Mode selection switch</td>
<td>BLOCK: Outputs on broken beam</td>
</tr>
<tr>
<td></td>
<td>UNBLOCK: Outputs on unbroken beam</td>
</tr>
<tr>
<td>② Sensitivity rheostat</td>
<td>For sensitivity adjustment</td>
</tr>
<tr>
<td>③ Delay time rheostat</td>
<td>0.1 ~ 10sec. delay period after state changes</td>
</tr>
<tr>
<td>④ Channel selector</td>
<td>Multi channel mode: CH 1 ~ 4, Single channel mode: CH 0</td>
</tr>
<tr>
<td>⑤ Received power level indicators</td>
<td>Received power level: indicated by one of 15 LEDs</td>
</tr>
<tr>
<td></td>
<td>Sensitivity-set-point: indicated by one of 15 LEDs</td>
</tr>
<tr>
<td>⑥ Output indicator</td>
<td>ON (red): Illuminates on output</td>
</tr>
<tr>
<td>⑦ Output indicator</td>
<td>OFF (green): Illuminates on no output</td>
</tr>
<tr>
<td>⑧ Terminals</td>
<td>Power supply (terminals 1 ~ 3) and relay contacts (4~6)</td>
</tr>
<tr>
<td>⑨ Ground</td>
<td>Connected to chassis</td>
</tr>
</tbody>
</table>
SENSITIVITY ADJUSTMENT

Before adjusting the sensitivity:

- Ensure that there is a clear line of sight between the transmitter and receiver,

- Set the CHANNEL selector on both the transmitter and receiver to 0 (single channel mode) if you are installing one transmitter/receiver set only: if you are installing more than one transmitter/receiver set, in close proximity, then select channel 1, 2, 3 or 4 (multi channel mode) to prevent set-to-set interference.

- The phase of the power supply to must be the same for both the transmitter(s) and the receiver(s).

Transmitter MWS-ST-2

- Apply power to the unit. The green POWER indicator will illuminate.

Receiver MWS-SR-2

- Apply power to the unit. Either the red ON or the green OFF indicator will illuminate.
- Set the mode selection switch to BLOCK. Turn sensitivity rheostat fully counter clockwise (minimum).
- Turn the delay time rheostat fully counter clockwise (minimum).
- The red output indicator ON will illuminate.
- The sensitivity is adjusted visually using the 15LED indicator array. The received power level and sensitivity-set-point are indicated on the receiver by a bank of 15 LEDs. Turn the sensitivity rheostat clockwise until the sensitivity-set-point is located halfway between the received power level in the BEAM UNOBSTRUCTED and the BEAM OBSTRUCTED states.

For an application where material is introduced from above, a suitable delay time must be provided to avoid instantaneous detection of falling material.

- To use UNBLOCK output mode, switch the mode selection switch to UNBLOCK.
- When adjusting the delay time, use the TEST button on the transmitter to simulate the beam being blocked.
SERVICE & WARRANTY

Getting Help
If your Princo equipment is not functioning properly, and attempts to solve the problem have failed, contact the closest Princo sales representative in your area, or call the factory direct and ask for service assistance. The factory telephone number is 1-800-221-9237.

To assist us in providing an efficient solution to the particular problem, please have the following information available when you call:

1. Instrument Model Number
2. Purchase Order Number
3. Date of Purchase Order
4. Process Material Being Monitored
5. Detailed Description of the Problem

If your equipment problem cannot be resolved over the phone, then it may be necessary to return the equipment for checkout/repair.

Do not return equipment without first contacting the factory for a Return Material Authorization number (RMA #).

Any equipment which is returned MUST include the following information in addition to the list above.

7. RMA Number
8. Person to contact at your Company
9. Return (Ship to) Address

Princo Microwave Switches are covered by a 1-year limited warranty. You will not be charged if it is determined that the problem is covered under warranty. Please return your equipment, freight charges prepaid. If repair is covered under warranty, Princo will pay return freight charges.

If telephone assistance or equipment return is not a practical solution to the problem, then it may be necessary for field assistance. Trained field servicemen are available from the factory on a time/expense basis to assist in these instances.

Warranty Statement
All Princo microwave level switches are backed by a 1-year warranty. Princo will repair or replace, at our option, any instrument that fails under normal use for up to 1 year after purchase.